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Key messages: 

 This Knowledge Gains: Summary and Implication Report (KGSIR) summarises recent 
advances in our understanding of the characterization and reduction of uncertainties 
in climate projections over the next two decades. 

 Constrained estimates of temperature change confirm that the world could come close 
to the warming limits of the Paris Agreement Long-Term Temperature Goal over the 
next two decades, reinforcing the need for strong and rapid mitigation efforts. 

 It is hard to rule out some of the high warming that is projected by some of the latest 
climate models, as these projections remain consistent with the observations when 
accounting for the large magnitude of internal variability in the climate system. 
Accounting for this variability increases the risk of higher warming over the coming 
decades. 

 For understanding regional impacts in the near term, it is important to get internal 
variability right. This can be achieved by selecting simulations that show climate 
variability that is both relevant to the region and also in line with observations. This is 
particularly useful when using a large number of simulations is not possible.  

 

Context 

 
Climate simulations from the Coupled Model Intercomparison Project phase 6 (CMIP6) 
present a very broad spectrum of possible climate evolutions over the historical and future 
periods. For climate projections, uncertainties can be decomposed into three contributions: (i) 
the internal climate variability, also called the unforced intrinsic variability of the climate 
system, (ii) uncertainties in the model physics resulting from unresolved processes, notably 
linked to the model resolution, and (iii) the range of possible external forcings, which depends 
on emission scenarios and natural external forcings, such as volcanic eruptions or solar 



variations. The relative contributions of each of these uncertainties depend on the time horizon 
considered, as well as on the size and location of the region of interest (Figure 1; Lehner et 
al., 2020).  
 
Over the coming decades, uncertainties from internal variability and model physics are 
predominant in projections of annual surface temperature at either global or regional scale, 
with a larger contribution from model uncertainty at the global scale and overall a larger 
contribution from internal variability at more regional scales. The contribution of internal 
variability to uncertainties in projections of future global and regional temperatures may also 
change depending on the time horizon considered due to the influence of the external forcings. 
Uncertainties arising from the forcing scenarios are very small at the beginning of the 
temperature projections and become increasingly important over time until, around the middle 
of the 21st century, they become the main determinant of global surface temperature. At 
regional scales this is later due to a more important contribution of internal climate variability. 
 
Understanding and reducing uncertainties in climate projections for the coming decades is of 
primary importance to supporting the implementation of effective adaptation and mitigation 
policies. We expect CMIP6 models to replace CMIP5 models in regional adaptation studies. 
Yet these CMIP6 models exhibit larger model uncertainties than before due to a larger range 
of climate sensitivity (Forster et al., 2020), as well as internal climate variability for some 
models (Parsons et al., 2020). 
 
When carrying out impact studies over a particular region, it is particularly important to take 
these uncertainties into account, especially those associated with internal variability. Large 
ensembles of climate simulations from specific models are useful for exploring these 
uncertainties, and uncertainties in both climate sensitivity and internal variability can be 
reduced by constraining model results with observations. Observational constraints are 
usually based on the assumption that there is a reliable link between the model performance 
compared to the observations over the historical era and the future model behaviour.  
 

 
Figure 1: Relative contributions to total uncertainty from multiple single-model initial-condition 
large ensembles (SMILEs) for (a) global annual decadal mean temperature and (b) Southern 
Europe summer temperature (June-July-August). The solid black lines indicate the borders 
between the three sources of uncertainty: (orange) internal variability, (green) emission 
scenario and (blue) model. The slightly transparent white shading around those lines indicates 



the uncertainty range from different SMILEs. The dashed line marks the border assuming 
internal variability remains fixed at its 1950-2014 multi-SMILE mean. Adapted from Lehner et 
al. (2020). 
 

 

Summary of knowledge gains 

 

Constraining near-term temperature projections  
 
In order to reduce uncertainties in CMIP6 climate projections, emergent relationships between 
an observable quantity in a past or the present period and a quantity related to the future 
climate (e.g., warming level) are commonly used. These emergent relationships can be based 
on a physical understanding of a process driving climate feedback and rely, in that case, on 
available observations in order to distinguish models with a realistic representation of the 
process from those with a less realistic representation. They can also be based on the 
statistical relationship between past and future warming. In this section, we summarise and 
compare some of the CONSTRAIN findings using near-term Global Surface Air Temperature 
(GSAT) change as an example. 
 
In the framework of the European Climate Prediction project (EUCP), Brunner et al. (2020) 
developed a method to weight the CMIP6 models based on their performance compared to 
observations, as well as their independence regarding the possible shared climate model 
components (e.g., same oceanic model) (see Abramowitz et al, 2019 for a review of the model 
dependence multi-model climate ensemble). More recently, Ribes et al. (2021) developed a 
statistical method to constrain the GSAT forced response using climate models to provide an 
estimation of the forced response and the observations to obtain a posterior (i.e., constrained) 
distribution. 
 
In addition to the CMIP6 climate models, climate model emulators have been widely used in 
the Intergovernmental Panel on Climate Change Sixth Assessment Report (IPCC AR6) due 
to their ability to perform a very large number of simulations faster and at lower calculation 
costs than more complex Earth system models. Therefore, they can be run many times (e.g. 
one thousand times) for a single emission scenario with different values of their parameters 
(e.g., the response of carbon sinks to global warming). This makes it possible to span the 
range of uncertainties for future climate projections. As not all the parameter combinations 
produce realistic climate projections, the model outputs are constrained using observations of 
historical climate change. For instance, Quilcaille et al. (2022) uses the observed GSAT 
change over recent decades, compatible CO2 fossil fuel emissions and historical cumulative 
net ocean CO2 sink to constrain the outputs from the OSCAR v3.1 climate model emulator 
(Gasser et al., 2017). 
 
The three methods are summarised in Table 1 and Figure 2 summarises the change in GSAT 
average over the 2021-2031 and 2031-2041 decades relative to the 1850-1900 pre-industrial 
period with and without constraints from these three different methods. For both periods, there 
are differences in the unconstrained temperature changes between the three methods, with 
lower temperature changes using OSCAR than those based directly on the CMIP6 models. 
This difference seems to be due to the fact that OSCAR is still calibrated with the previous 
climate model generation (CMIP5), which is characterised by a lower warming on average in 
comparison to CMIP6. The other two methods, which are both based on CMIP6, show 
relatively close unconstrained mean temperature changes but have more important 
differences in the range of uncertainty. These differences stem from different subsets of 
CMIP6 models used, as well as the processing and statistics used. In order to put these results 
in perspective, the 1.5°C and 2°C warming levels defined as anthropogenic warming (i.e. with 



the internal variability filtered out) are also highlighted in Figure 2. This definition is consistent 
with the results of the methods from Ribes et al. (2021) and Quilcaille et al. (2022). The results 
from Brunner et al. (2020), however, still contain internal climate variability. Therefore the 
temperature changes from this method are not directly comparable to these warming levels. 
 
The temperature changes are evaluated for several Shared Socioeconomic Pathways (SSPs) 
intending to span the range of plausible futures. These scenarios are based on different 
narratives describing the major socio-economic trends that could shape future society, ranging 
from SSP1, the most sustainable, to SSP5, based on fossil-fueled development. Each of these 
baseline SSP scenarios are combined with mitigation targets that are expressed as the level 
to which radiative forcing is limited in 2100, and which range from 1.9 to 8.5 W.m -2. In this 
report, the scenarios SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 are used to 
evaluate the constrained and unconstrained temperature changes for the several methods. 
Note that the scenario SSP1-1.9 was not available for the method from Brunner et al. (2020).  
 
Over the next decade (2021-2031), the 90% confidence ranges from the projections from 
Ribes et al. (2021) indicate that GSAT averaged over that decade could exceed 1.5°C for the 
SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios, although a large proportion of 
values remain below the 1.5°C threshold, notably with the SSP1-2.6 scenario. Only in the very 
low emissions scenarios SSP1-1.9 does the constrained temperature change from Ribes et 
al. (2021) not exceed 1.5°C over the course of a decade. The 90% uncertainty range of 
temperature change is wider with the method from Brunner et al. (2020) as internal climate 
variability is still included in the results. As a result, a larger part of the 90% uncertainty range 
for the average temperature change relative to 1850-1900 is higher than 1.5°C for the 2021-
2031 decade. The constrained temperature changes from Quilcaille et al. (2022) stay below 
the 1.5°C threshold for any scenario. These low values in comparison to the other methods 
are induced by the lower unconstrained temperature change related to the calibration with 
CMIP5, but also by the weighting approach of the ensemble simulations, which gives a lot of 
weight to a very small number of members. Further work can improve the application of 
constraints on the output of the OSCAR model. 
 

Constraint 
method 

Model Observations 

Brunner et al. 
(2020) 

CMIP6 multi-
model ensemble 

Climate model weighting by independence and performance 
(ClimWIP) method (e.g., Knutti et al., 2017b; Brunner et al., 
2019) 

Ribes et al. 
(2021) 

CMIP6 multi-
model ensemble 

GSAT over the whole historical period 

Quilcaille et al. 
(2022) 

OSCAR v3.1 GSAT over the recent decades; Compatible CO2 fossil fuel 
emissions; Historical cumulative net ocean CO2 sink 

 
Table 1: Summary of the three constraint methods used to constrain the global mean air-
surface temperature (GSAT) projections in Figure 2, with the reference, the model or multi-
model ensemble used and the observations used as constraint. 
 
The average GSAT level over the decade 2031-2041 could exceed 1.5°C when considering 
the 90% range of constrained temperatures from Ribes et al. (2021) for the very low emission 
scenario SSP1-1.9. A large proportion of the constrained temperature uncertainty range is 



higher than 1.5°C for the other scenarios, which highlights the high risk of exceeding this 
warming level before the middle of the 21st century if no deep emissions reductions are 
achieved globally over the next decade. Only a small part of the constrained temperature 90% 
range is above 2°C for Ribes et al. (2021) considering the SSP5-8.5 scenario. Considering 
the method from Brunner et al. (2020), a very small part of the 90% uncertainty range of the 
constrained temperature change has a temperature higher than 2°C over the decade 2031-
2041 in comparison to the 1850-1900 period for the SSP1-2.6 and SSP2-4.5 scenario, which 
becomes larger for the SSP3-7.0 and SSP5-8.5 scenario. As the results of this method contain 
internal climate variability, the 90% range is larger than the one from Ribes et al. (2021). More 
than half of the 90% uncertainty range of the constrained temperature change has a 
temperature higher than 1.5°C for the four SSPs scenario used with the Brunner et al. (2020) 
method. As for the 2021-2031 decade, the 90% range constrained temperature changes from 
Quilcaille et al. (2022) are well below the other methods, but still cannot exclude the possibility 
that 1.5°C of global warming is crossed when global emissions follow SSP2-4.5, SSP3-7.0 or 
SSP5-8.5. 
 

 
Figure 2: Unconstrained and constrained average (dots) and 5-95% range (bars) global 
surface temperature changes calculated over the 2021-2031 (upper), 2031-2041 (bottom) 
periods relative to 1850-1900 for different Shared Socioeconomic Pathways (SSPs) scenarios 
from two methods based on the CMIP6 latest climate models generation (Brunner et al., 2020 
and Ribes et al., 2021) and one method based on the OSCAR climate emulator (Quilcaille et 
al., 2022). Temperature changes from the IPSL ensemble of climate simulations (Bonnet et 
al., 2021a, in grey) and for a subset of members selected according to their consistency with 
AMOC and GSAT trends (Bonnet et al., 2021b, in black) over the globe and over Europe, with 



the average changes (dots) and the minimum and maximum (bars). The 1.5°C and 2°C 
warming levels are highlighted with the light red and red lines. 

 
Overall, several methods to estimate and reduce the uncertainties related to the projected 
change in global mean surface temperature have been developed within the CONSTRAIN 
project framework. Although there are some differences between the methods, the results 
confirm that without strong and rapid mitigation, the world will increasingly approach the 2°C 
warming level in the coming decades. 
 

Risk related to the internal climate variability over the next decades 

 
Some CMIP6 models are characterised by a larger low-frequency internal climate variability 
than their CMIP5 counterparts (Parsons et al., 2020). Such low-frequency internal variability 
at decadal to multi-centennial timescales can temporarily enhance or reduce the long-term 
imprints of externally forced climate change. It also has implications for the way climate models 
should be compared to observations. 
  
Using an ensemble of simulations from one specific CMIP6 climate model (IPSL-CM6A-LR; 
Boucher et al., 2020; Bonnet et al., 2021a), which has a relatively high internal low frequency 
variability within the CMIP6 multimodel ensemble, and using the intermediate emissions 
scenario SSP245, Bonnet et al., (2021b) provide new insights about the risk of a larger 
warming due to the low-frequency internal climate variability over the next decades. A strong 
positive relationship exists between the GSAT and the Atlantic Meridional Overturning 
Circulation (AMOC) trends since the 1940s. The ensemble members with the smallest rates 
of global warming since the 1940s, consistent with the observed trend, are also those with a 
large weakening of the AMOC, which is consistent with a recent reconstruction from Caesar 
et al. (2018). Based on these results, a subset of members most consistent in terms of 
warming trends and AMOC weakening, as well as in the temperature evolution since the 
1900s is selected. This subset of ensemble members also matches several AMOC 
observational fingerprints, which are in line with such a weakening. Together, these results 
suggest that internal variability from the Atlantic Ocean may have dampened the magnitude 
of global warming over the historical era. 

  
The risk related to this low-frequency internal variability is then analysed by looking at the 
future near-term evolution of this subset of members. Over the next few decades, there is on 
average a smaller AMOC weakening in the subset of members in comparison to the rest of 
the IPSL ensemble. This is associated with a larger warming rate of about 0.43 K per decade 
on average over the 2021-2041 period for the subset of ensemble members in comparison to 
the IPSL ensemble mean of 0.35 K per decade. In comparison, the warming rate over the 
2000-2020 period is of 0.29 K per decade for the IPSL ensemble mean and of 0.27 K per 
decade for the subset of members on average. The influence of this internal variability is 
however limited, as both the AMOC and GSAT low-frequency internal variability are projected 
to decrease in response to external forcings.  
 
 
Considering the 2021-2031 and 2031-2041 decades, the uncertainty related to the GSAT 
internal climate variability is found to be almost as large as the constrained temperature range 
from Ribes et al. (2021) (Figure 2). As expected from unconstrained climate simulations from 
a model with a relatively large climate sensitivity (Shlund et al., 2020), this ensemble of climate 
simulations shows a much larger warming than that of the constrained temperature from the 
three different methods. This result highlights the risk associated with low-frequency internal 
climate variability, which may induce faster temperature increases over the coming decades 
than anthropogenic warming only. As a result, global mean surface temperature could exceed 
2°C over the next decades because of the low-frequency internal climate variability, inducing 



higher risks related to climate impacts, while a 2°C warming level (i.e. the anthropogenic 
warming without internal variability) would not be exceeded. 
  
Although the realism of this high internal variability needs to be evaluated, these results 
reinforce the risk of a higher rate in the increase of global surface temperatures over the next 
decades induced by the low-frequency internal variability of the climate system. In a broader 
context, this work also provides a useful framework for evaluating the contribution of internal 
climate variability to future changes by selecting a subset of members based on their 
consistency to the variable of interest. Such a method could be applied in climate impact 
studies. 
 

Uncertainties in impact studies 

  
As stated in the introduction, uncertainty in GSAT change related to the internal climate 
variability is very large at regional scales, over Europe for example, in comparison to the global 
scale (Figure 2). In addition, temperature change at regional scale could be higher than at 
global scale (Figure 2). Taking the IPSL ensemble as an example, the uncertainty is larger 
than the unconstrained temperature from the three methods analysed before. It is therefore 
important to assess and take into account the impact of uncertainties related to internal 
variability in impact studies. 
 
In order to assess the impact of climate change on environment and resources, as well as to 
provide appropriate adaptation policies, Global Climate model (GCM) or Regional Climate 
model (RCM) are usually used as input to impact models. However, biases (i.e. discrepancies 
from the observations) are often present in climate models (Christensen et al., 2008), which 
could lead to a misrepresentation of the statistical distribution of the simulated variables and 
lead to meaningless results for the related climate impact study (Addor et al., 2016; Vrac et 
al., 2016). To overcome this issue, climate simulations are often adjusted using bias 
adjustment methods before their use in climate impact models. There are a variety of methods 
for this, depending on the variable and the region of interest (a review is provided in the IPCC 
AR6 WGI, chapter 10, Doblas-Reyes et al., 2021). 
  
When applying a bias correction prior to an impact study, a reference period on which the 
correction is calibrated is chosen. This period generally corresponds to the last 20 or 30 years, 
which often has good observational conditions. However, these timescales can be largely 
influenced by the internal climate variability, especially at the multidecadal and multi-
centennial timescales. Over Europe for example, the Atlantic Multidecadal Variability (AMV, 
Knight et al., 2006), which is the leading mode of the low-frequency internal climate variability 
in the North Atlantic, is known to influence the European climate at multidecadal timescale. 
 
To evaluate the impact of the internal climate variability in the bias adjustment results, a new 
pseudo-reality framework has been developed in Bonnet et al. (2022) based on the IPSL 
CMIP6 ensemble of climate simulations. A pseudo-reality framework consists of successively 
choosing a simulation as a reference to estimate the biases with respect to the other 
simulations. The idea of this new framework is to use two simulations with opposite AMV 
phases over the reference period as pseudo-realities and to use them to calibrate a bias 
adjustment for two simulations also characterised by opposite AMV phases (Figure 3a). The 
member with a positive AMV phase is characterised by higher surface temperature over 
Europe in comparison to the member with a negative AMV phase (Figure 3b). New indices 
have been developed in order to quantify how the internal climate variability could  influence 
the mean and extreme surface temperatures bias adjustment results over the near-future (i.e., 
over the 2029-2059 period). The value of this method is that it is easily reusable over another 
region or with another bias adjustment method. In particular, this could allow a quick 



comparison of the influence of internal variability on the outcome of different adjustment 
methods without having to apply it to an entire simulation ensemble. 
 

 
Figure 3: (a) Evolution of the Atlantic Multidecadal Variability (AMV) index of the four members 
of interest from the IPSL ensemble, with MB the members to be bias-adjusted and PO the 
pseudo-observations. The AMV index is defined as the average North Atlantic Sea Surface 
Temperature (SST) with the forced signal removed (i.e. estimated by the ensemble mean of 
the IPSL ensemble and removed for each member). In gray, the reference period used for the 
bias adjustment method. (b) Difference in Surface temperature (K) between the members #16 
and #25 of the IPSL ensemble  to be bias-adjusted over the study area.  
 
The results show that the results in mean and extreme surface temperature of the bias-
adjusted simulations are characterised by larger biases in the future (2029-2059 period) when 
the simulations are bias-adjusted with a simulation in an opposite phase of the low-frequency 
internal climate variability (here the AMV) than with a simulation in a same phase. Therefore, 
bias adjusting climate model simulations to observations with modes of variability that are out 
of phase in the reference period may lead to undesired biases in future projections. These 
results bring out the importance of generating a large ensemble of climate simulations and 
selecting simulations with modes of climate variability in phase with observations before 
conducting a bias-adjustment method when the bias adjustment of a whole ensemble is not 
possible. Such a selection has to be targeted to the mode(s) of variability that are relevant to 
the region of interest and may depend on the climate impacts being considered. Another way 
could be to perform a bias adjustment method using a longer (i.e. > 30 years) reference period, 
as previously suggested (Chen et al., 2020), so as to minimise the impact of low-frequency 
internal climate variability. 
 

Implications 

 

 
 Different methods lead to slightly different projected constrained temperatures, but 

there is agreement that global temperature changes will be close to 2°C in the coming 
decades unless strong mitigation efforts are implemented that potentially keep 
warming well below 2°C and pursue to limit it to 1.5°C as required by  the Paris 
Agreement. 

 

 
 Some models remain consistent with the observations, despite a larger than average 

warming in comparison to the observations, because they exhibit a large amount of 
internal variability. Accounting for this reinforces the risk of a higher warming over the 
coming decades. Emerging constraint approaches that try to constrain future warming 



using recent decades should therefore fully embrace the issue of low-frequency 
internal variability and take into account individual ensemble members rather than 
ensemble means, as this might have crucial implications in terms of how different 
models are weighted in such studies. 

 

 
 A new method has been developed in the context of the CONSTRAIN method to 

assess the impact of low-frequency internal climate variability on the results of a bias 
adjustment method for impact studies. This method is easily reusable over other 
regions or with other bias adjustment methods.  

 

 
 Large ensembles of climate simulations are useful tools for assessing the influence of 

internal climate variability in impact studies. A selection of simulations with modes of 
climate variability in phase with observations is preferable before conducting a bias-
adjustment method. Such a selection has to be targeted to the mode(s) of variability 
that are relevant to the region of interest and may depend on the climate impacts being 
considered. Alternatively the bias adjustment method could be performed by using a 
longer (i.e. > 30 years) reference period to minimise the impact of low-frequency 
internal climate variability in climate impact studies. 
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